Day-Ahead Intelligent Energy Management Strategy for Manufacturing Load Participating in Demand Response

3Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Flexible resources such as adjustable load widely participate in interaction with power grid, which can effectively promote renewable energy consumption. In previous studies, researchers generally focused on industrial and household users, but usually ignored the manufacturing load. Therefore, in this paper, an day-ahead intelligent energy management strategy for manufacturing load is proposed. Firstly, we analyze the power demand behavior of manufacturing load in detail, and describe the energy flow and material flow of manufacturing load through state task network (STN) method and mixed integer linear programming model. Then, the conditional deep convolution generative adversarial networks (C-DCGAN) algorithm is used to describe the uncertainty of new energy and construct a set of scheduling scenarios. Finally, case study shows that the proposed method can effectively improve the regional renewable energy consumption level and economic benefits of enterprises.

Cite

CITATION STYLE

APA

Zhang, X., & Sun, Z. (2023). Day-Ahead Intelligent Energy Management Strategy for Manufacturing Load Participating in Demand Response. IEEE Access, 11, 38291–38300. https://doi.org/10.1109/ACCESS.2023.3266250

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free