Interpretable AMR-Based Question Decomposition for Multi-hop Question Answering

13Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

Effective multi-hop question answering (QA) requires reasoning over multiple scattered paragraphs and providing explanations for answers. Most existing approaches cannot provide an interpretable reasoning process to illustrate how these models arrive at an answer. In this paper, we propose a Question Decomposition method based on Abstract Meaning Representation (QDAMR) for multi-hop QA, which achieves interpretable reasoning by decomposing a multi-hop question into simpler sub-questions and answering them in order. Since annotating the decomposition is expensive, we first delegate the complexity of understanding the multi-hop question to an AMR parser. We then achieve decomposition of a multi-hop question via segmentation of the corresponding AMR graph based on the required reasoning type. Finally, we generate sub-questions using an AMR-to-Text generation model and answer them with an off-the-shelf QA model. Experimental results on HotpotQA demonstrate that our approach is competitive for interpretable reasoning and that the sub-questions generated by QDAMR are well-formed, outperforming existing question-decomposition-based multi-hop QA approaches.

Cite

CITATION STYLE

APA

Deng, Z., Zhu, Y., Chen, Y., Witbrock, M., & Riddle, P. (2022). Interpretable AMR-Based Question Decomposition for Multi-hop Question Answering. In IJCAI International Joint Conference on Artificial Intelligence (pp. 4093–4099). International Joint Conferences on Artificial Intelligence. https://doi.org/10.24963/ijcai.2022/568

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free