Epithelial to mesenchymal transition (EMT) is a complex biological event, wherein polarized epithelial cells lose their integrity resulting in a mesenchymal phenotype with enhanced motility, a phenomenon known as metastasis. However, the underlying mechanisms of EMT are still poorly understood in cervical carcinomas. In this study, we investigated the molecular signalling events responsible for the effect of TGF-β, a potent inducer of EMT, on HeLa cervical cancer cells. We observed that TGF-β treatment (5 ng/mL) upregulates the expression of EMT-associated transcription factors such as Snail and Slug and downregulates the expression of epithelial markers such as ZO-1 and E-cadherin. Furthermore, treatment with TGF-β activates both Smad-dependent and Smad-independent signaling pathways, which subsides upon addition of Diphenyleneiodonium (DPI), a potent ROS inhibitor that inhibits NAPDH oxidase (NOX). TGF-β treatment enhanced cellular migration and invasion ability was diminished in the presence of ROS inhibitors. In addition, we also observed that ROS-mediated, TGF-β-induced EMT progression was inhibited using therapeutic candidates that target the key signal transduction mediators, including PI3K/AKT, ERK, and P38/MAPK. Accordingly, we demonstrated the involvement of redox biology (NOX2 and NOX4 mediate migration and invasion) in TGF-β-mediated EMT advancement and explored suitable therapeutic interventions.
CITATION STYLE
Muthuramalingam, K., Cho, M., & Kim, Y. (2020). Role of NAPDH oxidase and its therapeutic intervention in TGF-β-mediated EMT progression: an in vitro analysis on HeLa cervical cancer cells. Applied Biological Chemistry, 63(1). https://doi.org/10.1186/s13765-019-0485-6
Mendeley helps you to discover research relevant for your work.