Testing for principal component directions under weak identifiability

4Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

We consider the problem of testing, on the basis of a p-variate Gaussian random sample, the null hypothesis H0 : θ1 = θ01 against the alternative H1 : θ1 /= θ01, where θ1 is the “first” eigenvector of the underlying covariance matrix and θ01 is a fixed unit p-vector. In the classical setup where eigenvalues λ1 > λ2 ≥ · · · ≥ λp are fixed, the Anderson (Ann. Math. Stat. 34 (1963) 122–148) likelihood ratio test (LRT) and the Hallin, Paindaveine and Verdebout (Ann. Statist. 38 (2010) 3245–3299) Le Cam optimal test for this problem are asymptotically equivalent under the null hypothesis, hence also under sequences of contiguous alternatives. We show that this equivalence does not survive asymptotic scenarios where λn1/λn2 = 1 + O(rn) with rn = O(1/√n). For such scenarios, the Le Cam optimal test still asymptotically meets the nominal level constraint, whereas the LRT severely overrejects the null hypothesis. Consequently, the former test should be favored over the latter one whenever the two largest sample eigenvalues are close to each other. By relying on the Le Cam's asymptotic theory of statistical experiments, we study the non-null and optimality properties of the Le Cam optimal test in the aforementioned asymptotic scenarios and show that the null robustness of this test is not obtained at the expense of power. Our asymptotic investigation is extensive in the sense that it allows rn to converge to zero at an arbitrary rate. While we restrict to single-spiked spectra of the form λn1 > λn2 = · · · = λnp to make our results as striking as possible, we extend our results to the more general elliptical case. Finally, we present an illustrative real data example.

Cite

CITATION STYLE

APA

Paindaveine, D., Remy, J., & Verdebout, T. (2020). Testing for principal component directions under weak identifiability. Annals of Statistics, 48(1), 324–345. https://doi.org/10.1214/18-AOS1805

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free