Efficient Production of Wild and Non-Edible Brassica juncea (L.) Czern. Seed Oil into High-Quality Biodiesel via Novel, Green and Recyclable NiSO4 Nano-Catalyst

4Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

Abstract

Brassica juncea (L.) Czern. seeds contain 30% oil content and 0.43 mg KOH/g FFA content. Ni-TG nano-catalyst was synthesized through a wet impregnation route. The Ni-TG nano-catalyst has a crystalline size of 39.29 nm with a semispherical and ovoid shape. 0.3 wt% catalyst concentration, 6:1 methanol to oil ratio at 90 °C for 120 min yielded 93% of Brassica juncea (L.) Czern. biodiesel. Highlights: In the current study, a novel green nano-catalyst from Tragacanth gum (TG) was synthesized and used for sustainable biodiesel production from Brassica juncea (L.) Czern. seed oil. Brassica juncea (L.) Czern contains 30% oil on dry basis and free fatty acid content of 0.43 mg KOH/g. Physiochemical characterization of a newly synthesized nano-catalyst was performed by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), Transmission Electron Microscopy (TEM), and Fourier Transform Infrared Spectroscopy (FT-IR) analysis. The XRD results showed an average crystalline size of 39.29 nm. TEM analysis showed the cluster form of NiSO4 nanoparticles with a size range from 30–50.5 nm. SEM analysis of the catalyst showed semispherical and ovoid shapes with surface agglomeration. The synthesized catalyst was recovered and re-used in four repeated transesterification cycles. Maximum biodiesel yield (93%) was accomplished at 6:1 methanol to oil molar ratio, catalyst concentration of 0.3 wt%, at 90 °C for 120 min at 600 rpm using Response Surface Methodology (RSM) coupled with central composite design (CCD). Brassica juncea (L.) Czern. biodiesel was characterized by Thin Layer Chromatography (TLC), FT-IR, Nuclear Magnetic Resonance (NMR) (1H, 13C), and Gas Chromatography-Mass Spectroscopy (GCMS) analytical techniques. The major fatty acid methyl esters were 16-Octadecenoic acid and 9-Octadecenoic acid methyl ester. The fuel properties, i.e., flash point (97 °C), density (825 kg/m3 at 40 °C), kinematic viscosity (4.66 mm2/s), pour point (–10 °C), cloud point (–14 °C), sulfur content (66 wt.%), and total acid number (182 mg KOH/g) were according to the International biodiesel standards. The reaction kinetic parameters were determined, and all the reactions followed Pseudo first-order kinetics. It was concluded that non-edible Brassica juncea (L.) Czern. seed oil is one of the sustainable candidates for the future biofuel industry using a cleaner, reusable, and highly active Ni-modified TG nano-catalyst.

Cite

CITATION STYLE

APA

Akhtar, M. T., Ahmad, M., Asma, M., Munir, M., Zafar, M., Sultana, S., … Kalam, M. A. (2022). Efficient Production of Wild and Non-Edible Brassica juncea (L.) Czern. Seed Oil into High-Quality Biodiesel via Novel, Green and Recyclable NiSO4 Nano-Catalyst. Sustainability (Switzerland), 14(16). https://doi.org/10.3390/su141610188

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free