Overhead spray applications of in-field tomato treatments dissolved in aqueous solutions have specific pest targets (fungal, bacterial, insect, or other). Any organism present in the solution or on treated plant surfaces that is not a specific target of the application is unlikely inactivated and can instead be spread through the phyllosphere. In this laboratory study, commercially labeled pesticides (including Actigard 50WG, Bravo Weather Stik 6F, Cabrio 20EG, Kasumin, Kocide 3000 46WG, Oxidate 27L, Penncozeb 75DF, ProPhyt 54.5L, Stimplex 100L, Firewall, 22.4WP, and Tanos 50DF) in common use in commercial tomato production fields of the Eastern Shore of Virginia were investigated for activity against in vitro bacterial contamination of pesticide application waters. Pesticides of interest were tank mixed individually with one of the plant pathogens Ralstonia solanacearum, Xanthomonas campestris pv. vesicatoria, Pseudomonas syringae pv. tomato, Erwinia carotovora subsp. carotovora, or one of two serovars (Newport and Montevideo) of the human pathogen Salmonella enterica to assess reduction values during the average time between mixing and initial application. Observations suggested that while some treatments had a noticeable effect on population levels, only the oxidizer, peroxyacetic acid, showed significant and consistent levels of suppression against all bacteria investigated, at levels that could have practical implications. © International Association for Food Protection.
CITATION STYLE
Mahovic, M., Gu, G., & Rideout, S. (2013). Effects of pesticides on the reduction of plant and human pathogenic bacteria in application water. Journal of Food Protection, 76(4), 719–722. https://doi.org/10.4315/0362-028X.JFP-12-440
Mendeley helps you to discover research relevant for your work.