Ammonia (NH3) constitutes the single largest loss of manure nitrogen (N), making measures targeted at reducing its emissions meaningful for the environment and the overall efficiency of manure N use. In this study, the performance of two emission-reducing techniques, acidification and injection, were studied in a field experiment with grass ley over two growing seasons. Emissions of NH3, crop growth, and N use efficiency were determined from plots fertilized with cattle slurry either band spread, injected or band spread after acidification. The approximate cumulative NH3 losses from the plots with band-spread untreated slurry amounted to about 22 kg NH3-N ha−1 over the observation periods in 2017 and 10 kg NH3-N ha−1 in 2018. The injection and acidification reduced the estimated cumulative NH3 emissions by 43 and 95% respectively in 2018, and both by 97% in 2017. In 2017, the emission-reducing techniques had no impacts on crop growth, but in 2018, acidification increased dry matter yield by 29% and apparent N recovery by 65% compared with band-spread untreated slurry. According to the current results, acidification consistently produced the lowest NH3 emissions and a discernible positive yield effect. It can therefore be recommended instead of injection for reducing NH3 emissions in boreal grass cultivation.
CITATION STYLE
Keskinen, R., Termonen, M., Salo, T., Luostarinen, S., & Räty, M. (2022). Slurry acidification outperformed injection as an ammonia emission-reducing technique in boreal grass cultivation. Nutrient Cycling in Agroecosystems, 122(2), 139–156. https://doi.org/10.1007/s10705-021-10190-1
Mendeley helps you to discover research relevant for your work.