Eris - another brick in the wall: Empirical formulas, molar masses, biosynthesis reactions, enthalpy, entropy and Gibbs energy of Omicron EG.5 Eris and EG.5.1 variants of SARS-CoV-2

3Citations
Citations of this article
1Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Since 2019, when it appeared in Wuhan, in the wild type form later labeled Hu-1, SARS-CoV-2 mutated dozens of times and evolved towards increase in infectivity and decrease or maintenance of constant pathogenicity through dozens of variants. The last of them are Omicron EG.5 and EG.5.1. Until 2019, an empirical formula was known only for the poliovirus. Until now empirical formulas and thermodynamic properties were reported for all variants of SARS-CoV-2 and some other viruses. Also, models were developed that describe the biothermodynamic background of SARS-CoV-2 interaction with its human host. With every new mutation in SARS-CoV-2, the question is raised about the further evolution of the virus. This paper reports for the first time empirical formulas and molar masses of Omicron EG.5 and EG.5.1 variants, as well as thermodynamic properties (enthalpy, entropy and Gibbs energy) of formation and biosynthesis. Moreover, the driving force of virus multiplication was analyzed, as well as multiplication rate and pathogenicity of Omicron EG.5 and EG.5.1.

Cite

CITATION STYLE

APA

Popović, M. E., Pantović Pavlović, M., & Popović, M. (2023). Eris - another brick in the wall: Empirical formulas, molar masses, biosynthesis reactions, enthalpy, entropy and Gibbs energy of Omicron EG.5 Eris and EG.5.1 variants of SARS-CoV-2. Microbial Risk Analysis, 25. https://doi.org/10.1016/j.mran.2023.100280

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free