Nanomaterials play nowadays a preponderant role in the field of materials science due to the wide range of applications and synergy with other fields of knowledge. Recently, carbonaceous nanomaterials, most notably bi-dimensional graphene (2D graphene), have been highlighted by their application in several areas: electronics, chemistry, medicine, energy and the environment. The search for new materials has led many researchers to develop new routes of synthesis and the expansion of the current means of production, by the anchoring of other nanomaterials on graphene surface, or by modifications of its hexagon sp2 structure, through the doping of heteroatoms. By adding functional groups to the graphene surface, it is possible to increase its affinity with other materials, such as polymers, magnetic nanoparticles and clays, leading to the formation of new nanocomposites. Several covalent and non-covalent functionalization processes, their advantages and disadvantages with respect to their interactions with other chemical species, are discussed in this review. The characterization of these materials is a sensitive topic, since the insertion of functional groups over the graphene basal plane causes changes in its morphology and the so-called chemistry of surface. In this sense, beyond the classical techniques, such as x-ray Diffraction (XRD), Infrared Spectroscopy (FTIR), Raman Spectroscopy and Transmission Electron Microscopy (TEM), modern characterization techniques of graphene-based nanomaterials are discussed, focusing on those more indicated according to the proposed modifications. A significant attention was driven to environmental applications of functionalized graphenes, specifically in the removal of pollutants from wastewaters.
CITATION STYLE
Fraga, T. J. M., Da Motta Sobrinho, M. A., Carvalho, M. N., & Ghislandi, M. G. (2020, September 1). State of the art: synthesis and characterization of functionalized graphene nanomaterials. Nano Express. Institute of Physics. https://doi.org/10.1088/2632-959X/abb921
Mendeley helps you to discover research relevant for your work.