Salah satu tanaman yang tumbuh di daerah tropis dan memiliki harga jual yang cukup tinggi serta menjadi sumber devisa bagi Indonesia ialah kopi. Kualitas dan produksi kopi akan menurun jika kopi mudah terserang penyakit yang disebabkan oleh perubahan iklim seperti cuaca, suhu, kelembapan udara,tanah, perawatan tanaman yang kurang maksimal dan ketinggian lahan. Semakin berkembangnya teknologi saat ini diperlukan suatu metode kecerdasan buatan untuk membantu petani dalam mengenali jenis penyakit kopi. Metode yang digunakan untuk melakukan klasifikasi penyakit kopi arabika ialah K-Nearest Neighbor. Adapun Dataset yang diproses dibagi menjadi 2 yakni data training sebesar 320 citra dan data testing sebanyak 80 citra selanjutnya dilakukan tahapan image preprocessing. Setelah itu dilakukan ekstraksi glcm yakni fitur yang digunakan contrast, homogeneity, correlation, energy. Pada penelitian ini hasil percobaan dari beberapa nilai K pada K-Nearest Neighbor menunjukan akurasi tertinggi terdapat pada K=11 dengan hasil pengujian model menggunakan confusion matrix memperoleh tingkat akurasi sebesar 94 %.
CITATION STYLE
Matarru, S., Pongdatu, G. A. N., & Rusman, J. (2023). Klasifikasi Penyakit pada Tanaman Kopi Arabika Menggunakan Metode K-Nearest Neighbor (KNN) Berbasis Citra. The Indonesian Journal of Computer Science, 12(2). https://doi.org/10.33022/ijcs.v12i2.3172
Mendeley helps you to discover research relevant for your work.