PuVAE: A Variational Autoencoder to Purify Adversarial Examples

49Citations
Citations of this article
76Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Deep neural networks are widely used and exhibit excellent performance in many areas. However, they are vulnerable to adversarial attacks that compromise networks at inference time by applying elaborately designed perturbations to input data. Although several defense methods have been proposed to address specific attacks, other types of attacks can circumvent these defense mechanisms. Therefore, we propose Purifying Variational AutoEncoder (PuVAE), a method to purify adversarial examples. The proposed method eliminates an adversarial perturbation by projecting an adversarial example on the manifold of each class and determining the closest projection as a purified sample. We experimentally illustrate the robustness of PuVAE against various attack methods without any prior knowledge about the attacks. In our experiments, the proposed method exhibits performances that are competitive with state-of-the-art defense methods, and the inference time is approximately 130 times faster than that of Defense-GAN which is a state-of-the art purifier method.

Cite

CITATION STYLE

APA

Hwang, U., Park, J., Jang, H., Yoon, S., & Cho, N. I. (2019). PuVAE: A Variational Autoencoder to Purify Adversarial Examples. IEEE Access, 7, 126582–126593. https://doi.org/10.1109/ACCESS.2019.2939352

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free