Advances in biodiversity observation network

4Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

Biodiversity is the variability of ecological organisms and their environment. It is also the foundation of ecosystem services as the material basis for humans. Climate change and irrational human activities have resulted in unprecedented rapid loss of biodiversity. Governments and relevant international organizations have been actively engaged in global action for monitoring and protection of biodiversity. To better understand the current status and changes of biodiversity, biodiversity monitoring has evolved from a single site to observatory networks. At the global scale, the Group on Earth Observations Biodiversity Observation Network (GEO BON) is representative and primarily develops and refines Essential Biodiversity Variables (EBVs). At the regional scale, the European Union has established the EU-BON, and the Asia-Pacific region has set up AP-BON. At the national scale, Switzerland, the United Kingdom, and Japan have established a national biodiversity monitoring network. The Chinese Academy of Sciences has built the China Biodiversity Monitoring and Research network (Sino BON) during the Twelfth Five-Year Plan. The monitoring network focused on forests, grasslands, deserts ecosystem, mammals, birds, amphibians, reptiles, fish, insects, soil fauna, and microorganisms. Biodiversity monitoring not only relies on traditional manual surveys but also uses new technologies, such as genetic barcoding, camera traps, and drones. Remote sensing can provide continuous biodiversity information at a large scale and is thus expected to be an important method for observing biodiversity. GEO BON established the "Ecosystem Structure" workgroup to develop RS EBVs for measuring or modeling globally with the integration of remote sensing and in-situ observations. Sino BON also established a forest tower crane network to monitor the biodiversity of canopies and introduced unmanned aerial vehicle lidar and hyperspectral remote sensing for biodiversity monitoring at a large scale. The development of China GEOSS is expected to enable integration of the ground observation provided by Sino BON into satellite data. This integration will achieve biodiversity monitoring from space to ground and will benefit the biodiversity conservation and evaluation in China.

Cite

CITATION STYLE

APA

Hu, T., Wang, N., Zhao, X., Mi, X., Guo, Q., & Ma, K. (2018, July 1). Advances in biodiversity observation network. Yaogan Xuebao/Journal of Remote Sensing. Science Press. https://doi.org/10.11834/jrs.20188054

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free