DNA-protein complexes (nucleoids) are believed to be the segregating unit of mitochondrial DNA (mtDNA) in Saccharomyces cerevisiae. A mitochondrial HMG box protein, Abf2p, is needed for maintenance of mtDNA in cells grown on rich dextrose medium, but is dispensible in glycerol grown cells. As visualized by 4',6'-diamino-2-phenylindole staining, mtDNA nucleoids in mutant cells lacking Abf2p (Δabf2) are diffuse compared with those in wild-type cells. We have isolated mtDNA nucleoids and characterized two mtDNA-protein complexes, termed NCLDp-2 and NCLDs-2, containing distinct but overlapping sets of polypeptides. This protocol yields similar nucleoid complexes from the Δabf2 mutant, although several proteins appear lacking from NCLDs-2. Segments of mtDNA detected with probes to COXII, VAR1 and ori5 sequences are equally sensitive to DNase I digestion in NCLDs-2 and NCLDp-2 from wild-type cells and from the Δabf2 mutant, However, COXII and VAR1 sequences are 4- to 5-fold more sensitive to DNase I digestion of mtDNA in toluene-permeabilized mitochondria from the Δabf2 mutant than from wild-type cells, but no difference in DNase I sensitivity was detected with the ori5 probe. These results provide a first indication that Abf2p influences differential organization of mtDNA sequences.
CITATION STYLE
Newman, S. M., Zelenaya-Troitskaya, O., Perlman, P. S., & Butow, R. A. (1996). Analysis of mitochondrial DNA nucleoids in wild-type and a mutant strain of Saccharomyces cerevisiae that lacks the mitochondrial HMG box protein Abf2p. Nucleic Acids Research, 24(2), 386–393. https://doi.org/10.1093/nar/24.2.386
Mendeley helps you to discover research relevant for your work.