Purpose:This study aims to detect the presence of pneumonia or not in thorax x-ray images using the Gray Level Co-Occurence Matrix (GLCM) method as well as find out the accuracy of the accuracy of pneumonia detection accuracy.Design/methodology/approach:The process of detecting pneumonia in thorax x-ray images can use Content Based Image Retriveal (CBIR). CBIR is an image search method by comparing the input image feature with the image feature in the database. Extraction features x-ray texture of thorax in pneumonia detection using Color Histogram, Discrete Cosine Transform and Gray Level Cooccurence Matrix (GLCM). From the day of extraction the feature will be carried out similarity measurements with database images using Euclidean Distance..Findings/result: The test results showed that the GLCM extraction feature with euclidean distance similarity measurements gained 95% accuracy on 100 training data and 20 test data, with the number of images displayed 6. Whereas when testing using data that has been trained produces 100% accuracy.Originality/value/state of the art:The difference between this study and previous research is in the pre-processing method section of imagery. This pre-processing process, x-ray image of thorax is carried out color histogram and discrete cosine transform process. Then continued the extraction of features using GLCM. The output of this system is the result of detection whether normal or pneumonia. Tujuan:Penelitian ini bertujuan untuk mendeteksi adanya Pneumonia atau tidak pada citra x-ray thorax menggunakan metode Gray Level Co-Occurence Matrix (GLCM) serta mengetahui akurasi tingkat akurasi deteksi pneumonia.Perancangan/metode/pendekatan:Proses deteksi penyakit Pneumonia pada citra x-ray thorax dapat menggunakan Content Based Image Retriveal (CBIR). CBIR adalah suatu metode pencarian citra dengan melakukan perbandingan antara fitur citra input dengan fitur citra yang ada didalam database. Ekstraksi fitur tekstur x-ray thorax dalam deteksi pneumonia menggunakan Color Histogram, Discrete Cosine Transform dan Gray Level Cooccurence Matrix (GLCM). Dari hari ekstraksi fitur tersebut akan dilakukan pengukuran kemiripan dengan citra database menggunakan jarak Euclidean Distance.Hasil:Hasil pengujian menunjukkan bahwa fitur ekstraksi GLCM dengan pengukuran kemiripan Euclidean Distance diperoleh akurasi sebesar 95% pada data latih 100 dan data uji 20, dengan jumlah citra yang ditampilkan 6. Sedangkan bila pengujian menggunakan data yang sudah dilatihkan menghasilkan akurasi 100%.State of the art:Perbedaan penelitian ini dengan penelitian sebelumnya adalah pada bagian metode pre processing citra. Proses pre processing ini, citra x-ray thorax di lakukan proses Color Histogram dan Discrete Cosine Transform. Kemudian dilanjutkan ekstraksi fitur menggunakan GLCM. Output dari sistem ini berupa hasil deteksi apakah normal atau pneumonia.
CITATION STYLE
Kaswidjanti, W., Yuwono, B., Azizah, N., & Cahyana, N. H. (2021). Content Based Image Retrieval Using Gray Level Co-Occurrence Matrix to Detect Pneumonia in X-Ray Thorax Image. Telematika, 18(2), 244. https://doi.org/10.31315/telematika.v18i2.5508
Mendeley helps you to discover research relevant for your work.