Prediction of Both E-Jet Printing Ejection Cycle Time and Droplet Diameter Based on Random Forest Regression

3Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

Electrohydrodynamic jet (E-jet) printing has broad application prospects in the preparation of flexible electronics and optical devices. Ejection cycle time and droplet size are two key factors affecting E-jet-printing quality, but due to the complex process of E-jet printing, it remains a challenge to establish accurate relationships among ejection cycle time and droplet diameter and printing parameters. This paper develops a model based on random forest regression (RFR) for E-jet-printing prediction. Trained with 72 groups of experimental data obtained under four printing parameters (voltage, nozzle-to-substrate distance, liquid viscosity, and liquid conductivity), the RFR model achieved a MAPE (mean absolute percent error) of 4.35% and an RMSE (root mean square error) of 0.04 ms for eject cycle prediction, as well as a MAPE of 2.89% and an RMSE of 0.96 μm for droplet diameter prediction. With limited training data, the RFR model achieved the best prediction accuracy among several machine-learning models (RFR, CART, SVR, and ANN). The proposed prediction model provides an efficient and effective way to simultaneously predict the ejection cycle time and droplet diameter, advancing E-jet printing toward the goal of accurate, drop-on-demand printing.

References Powered by Scopus

Random forests

94837Citations
29772Readers

This article is free to access.

Get full text

This article is free to access.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Chen, Y., Lao, Z., Wang, R., Li, J., Gai, J., & You, H. (2023). Prediction of Both E-Jet Printing Ejection Cycle Time and Droplet Diameter Based on Random Forest Regression. Micromachines, 14(3). https://doi.org/10.3390/mi14030623

Readers over time

‘2402468

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 1

100%

Readers' Discipline

Tooltip

Engineering 1

100%

Save time finding and organizing research with Mendeley

Sign up for free
0