Gradient estimation in dendritic reinforcement learning

3Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We study synaptic plasticity in a complex neuronal cell model where NMDA-spikes can arise in certain dendritic zones. In the context of reinforcement learning, two kinds of plasticity rules are derived, zone reinforcement (ZR) and cell reinforcement (CR), which both optimize the expected reward by stochastic gradient ascent. For ZR, the synaptic plasticity response to the external reward signal is modulated exclusively by quantities which are local to the NMDA-spike initiation zone in which the synapse is situated. CR, in addition, uses nonlocal feedback from the soma of the cell, provided by mechanisms such as the backpropagating action potential. Simulation results show that, compared to ZR, the use of nonlocal feedback in CR can drastically enhance learning performance. We suggest that the availability of nonlocal feedback for learning is a key advantage of complex neurons over networks of simple point neurons, which have previously been found to be largely equivalent with regard to computational capability. © 2012 Schiess et al.

Cite

CITATION STYLE

APA

Schiess, M., Urbanczik, R., & Senn, W. (2012). Gradient estimation in dendritic reinforcement learning. Journal of Mathematical Neuroscience, 2(1). https://doi.org/10.1186/2190-8567-2-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free