The effects of worms, clay and biochar on CO2 emissions during production and soil application of co-composts

22Citations
Citations of this article
71Readers
Mendeley users who have this article in their library.

Abstract

In this study we evaluated CO2 emissions during composting of green wastes with clay and/or biochar in the presence and absence of worms (species of the genus Eisenia), as well as the effect of those amendments on carbon mineralization after application to soil. We added two different doses of clay, biochar or their mixture to pre-composted green wastes and monitored carbon mineralization over 21 days in the absence or presence of worms. The resulting co-composts and vermicomposts were then added to a loamy Cambisol and the CO2 emissions were monitored over 30 days in a laboratory incubation. Our results indicated that the addition of clay or clay/biochar mixture reduced carbon mineralization during co-composting without worms by up to 44 %. In the presence of worms, CO2 emissions during composting increased for all treatments except for the low clay dose. The effect of the amendments on carbon mineralization after addition to soil was small in the short term. Overall, composts increased OM mineralization, whereas vermicomposts had no effect. The presence of biochar reduced OM mineralization in soil with respect to compost and vermicompost without additives, whereas clay reduced mineralization only in the composts. Our study indicates a significant role of the conditions of composting on mineralization in soil. Therefore, the production of a low CO2 emission amendment requires optimization of feedstocks, co-composting agents and worm species.

Cite

CITATION STYLE

APA

Barthod, J., Rumpel, C., Paradelo, R., & Dignac, M. F. (2016). The effects of worms, clay and biochar on CO2 emissions during production and soil application of co-composts. SOIL, 2(4), 673–683. https://doi.org/10.5194/soil-2-673-2016

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free