In light of competing hypotheses on arthropod phylogeny, independent data are needed in addition to traditional morphology and modern molecular approaches. One promising approach involves comparisons of structure and development of the nervous system. In addition to arthropod brain and ventral nerve cord morphology and anatomy, individually identifiable neurons (IINs) provide new character sets for comparative neurophylogenetic analyses. However, very few species and transmitter systems have been investigated, and still fewer species of centipedes have been included in such analyses. In a multi-methodological approach, we analyze the ventral nerve cord of the centipede Lithobius forficatus using classical histology, X-ray micro-computed tomography and immunohistochemical experiments, combined with confocal laser-scanning microscopy to characterize walking leg ganglia and identify IINs using various neurotransmitters. In addition to the subesophageal ganglion, the ventral nerve cord of L. forficatus is composed of the forcipular ganglion, 15 well-separated walking leg ganglia, each associated with eight pairs of nerves, and the fused terminal ganglion. Within the medially fused hemiganglia, distinct neuropilar condensations are located in the ventral-most domain. Immunoreactive neurons of different transmitter systems (allatostatin, histamine, and FMRF-amide) display serially homologous patterns that may lay the foundation for comparison with other arthropod taxa. Moreover, a pair of histaminergic neurons may constitute a promising intra- as well as interspecific IIN candidate.
CITATION STYLE
Schendel, V., Kenning, M., & Sombke, A. (2018). A comparative analysis of the ventral nerve cord of Lithobius forficatus (Lithobiomorpha): Morphology, neuroanatomy, and individually identifiable neurons. Arthropod Systematics and Phylogeny, 76(3), 377–394. https://doi.org/10.3897/asp.76.e31950
Mendeley helps you to discover research relevant for your work.