Many strains of Arabidopsis (Arabidopsis thaliana) require exposure to prolonged cold for rapid flowering, a process known as vernalization. Vernalization in Arabidopsis results in the suppression of FLOWERING LOCUS C (FLC), a repressor of flowering. In a screen for mutants that no longer require vernalization for rapid flowering, we identified a dominant allele of the Enhancer of Zeste E(z) ortholog CURLY LEAF (CLF), clf-59. CLF is a Polycomb Group gene, and the clf-59 mutant protein contains a proline-to-serine transition in a cysteine-rich region that precedes the SET domain. Mutant plants are early flowering and have reduced FLC expression, but, unlike clf loss-of-function mutants, clf-59 mutants do not display additional pleiotropic phenotypes. clf-59 mutants have elevated levels of trimethylation on lysine 27 of histone H3 (H3K27me3) at FLC. Thus, clf-59 appears to be a gain-of-function allele, and this allele represses FLC without some of the components required for vernalization-mediated repression. In the course of this work, we also identified a marked difference in H3K27me3 levels at FLC between plants that contain and those that lack the FRIGIDA (FRI) gene. Furthermore, FRI appears to affect CLF occupancy at FLC; thus, our work provides insight into the molecular role that FRI plays in delaying the onset of flowering. © 2009 American Society of Plant Biologists.
CITATION STYLE
Doyle, M. R., & Amasino, R. M. (2009). A single amino acid change in the enhancer of zeste ortholog CURLY LEAF results in vernalization-independent, rapid flowering in Arabidopsis. Plant Physiology, 151(3), 1688–1697. https://doi.org/10.1104/pp.109.145581
Mendeley helps you to discover research relevant for your work.