This paper details two case studies that make use of laser metal deposition for local reinforcement of sheet metal components. Two benchmark scenarios are investigated, both using aluminum alloys: (i) using laser cladding to increase the stiffness of a pre-formed component, and (ii) applying a local cladding on sheet metal for increasing the thickness prior to a hole-flanging operation. The results show that both routes are viable. Applying claddings onto sheet metal before a metal forming operation must ensure suitable formability, which may be limited by the layer material and undesired changes in the microstructure of the sheet. The limited formability has to be taken into account in the design of the forming operation. Cladding onto already formed components has to cope with inevitable distortion of the component. Nevertheless, introducing additive manufacturing into the field of sheet metal forming opens the possibility to produce new products such as tailored laser-cladded blanks, combinations of sheet and bulk components and to develop new methods such as stiffness management in lightweight design.
CITATION STYLE
Bambach, M., Sviridov, A., Weisheit, A., & Schleifenbaum, J. H. (2017). Case studies on local reinforcement of sheet metal components by laser additive manufacturing. Metals, 7(4). https://doi.org/10.3390/met7040113
Mendeley helps you to discover research relevant for your work.