Serotonin Receptor 2C and Insulin Secretion

49Citations
Citations of this article
67Readers
Mendeley users who have this article in their library.

Abstract

Type 2 diabetes mellitus (T2DM) describes a group of metabolic disorders characterized by defects in insulin secretion and insulin sensitivity. Insulin secretion from pancreatic β-cells is an important factor in the etiology of T2DM, though the complex regulation and mechanisms of insulin secretion from β-cells remains to be fully elucidated. High plasma levels of serotonin (5-hydroxytryptamine; 5-HT) have been reported in T2DM patients, though the potential effect on insulin secretion is unclear. However, it is known that the 5-HT receptor 2C (5-HT2CR) agonist, mCPP, decreases plasma insulin concentration in mice. As such, we aimed to investigate the expression of the 5-HT2CR in pancreatic islets of diabetic mice and the role of 5-HT2CR signaling in insulin secretion from pancreatic β-cells. We found that 5-HT2CR expression was significantly increased in pancreatic islets of db/db mice. Furthermore, treatment with a 5-HT2CR antagonist (SB242084) increased insulin secretion from pancreatic islets isolated from db/db mice in a dose-dependent manner, but had no effect in islets from control mice. The effect of a 5-HT2CR agonist (mCPP) and antagonist (SB242084) were further studied in isolated pancreatic islets from mice and Min-6 cells. We found that mCPP significantly inhibited insulin secretion in Min-6 cells and isolated islets in a dose-dependent manner, which could be reversed by SB242084 or RNA interference against 5-HT2CR. We also treated Min-6 cells with palmitic acid for 24 h, and found that the expression of 5-HT2CR increased in a dose-dependent manner; furthermore, the inhibition of insulin secretion in Min-6 cells induced by palmitic acid could be reversed by SB242084 or RNA interference against 5-HT2CR. Taken together, our data suggests that increased expression of 5-HT2CR in pancreatic β-cells might inhibit insulin secretion. This unique observation increases our understanding of T2DM and suggests new avenues for potential treatment. © 2013 Zhang et al.

Cite

CITATION STYLE

APA

Zhang, Q., Zhu, Y., Zhou, W., Gao, L., Yuan, L., & Han, X. (2013). Serotonin Receptor 2C and Insulin Secretion. PLoS ONE, 8(1). https://doi.org/10.1371/journal.pone.0054250

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free