The graphite tailing causes serious environmental pollution, and the pollution problem becomes worse and worse with the increase in graphite demands. This paper focuses on the graphite tailing concrete, which can alleviate the environment problem through utilizing graphite tailings. With the orthogonal experimental design, 16 groups of specimens were designed to investigate the compressive strength of the graphite tailing concrete, and each group had 6 specimens. The significance sequence of the influencing factors for the compressive strength was studied, including the ratio of water to cement, sand ratio, graphite tailings content, and carbon fiber content. The optimal contents of graphite tailings and carbon fiber were obtained from the further experimental study on the electrical characteristics of the graphite tailing concrete, and a regression analysis was conducted to develop the predictive mixture design relationships for the electrical resistivity of the conductive graphite tailing concrete. The experimental results show that the conductive concrete mixture containing graphite tailings and carbon fiber has satisfactory mechanical strength along with well electrical conductivity. With the increase in graphite tailings content, the compressive strength decreases slowly, but the electrical resistivity decreases much more obviously. Predictions with the proposed relationship are in reasonable agreement with experimental results. This study provides references for the graphite tailing utilization alleviating the environment problems.
CITATION STYLE
Liu, H., Liu, K., Lan, Z., & Zhang, D. (2018). Mechanical and Electrical Characteristics of Graphite Tailing Concrete. Advances in Materials Science and Engineering, 2018. https://doi.org/10.1155/2018/9297628
Mendeley helps you to discover research relevant for your work.