Accumulation of eicosapolyenoic acids enhances sensitivity to abscisic acid and mitigates the effects of drought in transgenic arabidopsis thaliana

16Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

IgASE1, a C18 Δ9-specific polyunsaturated fatty acid elongase from the marine microalga Isochrysis galbana, is able to convert linoleic acid and α-linolenic acid to eicosadienoic acid and eicosatrienoic acid in Arabidopsis. Eicosadienoic acid and eicosatrienoic acid are precursors of arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, which are synthesized via the Δ8 desaturation biosynthetic pathways. This study shows that the IgASE1-expressing transgenic Arabidopsis exhibited altered morphology (decreased leaf area and biomass) and enhanced drought resistance compared to wild-type plants. The transgenic Arabidopsis were hypersensitive to abscisic acid (ABA) during seed germination, post-germination growth, and seedling development. They had elevated leaf ABA levels under well-watered and dehydrated conditions and their stomata were more sensitive to ABA. Exogenous application of eicosadienoic acid and eicosatrienoic acid can mimic ABA and drought responses in the wild type plants, similar to that found in the transgenic ones. The transcript levels of genes involved in the biosynthesis of ABA (NCED3, ABA1, AAO3) as well as other stress-related genes were upregulated in this transgenic line upon osmotic stress (300mM mannitol). Taken together, these results indicate that these two eicosapolyenoic acids or their derived metabolites can mitigate the effects of drought in transgenic Arabidopsis, at least in part, through the action of ABA. © The Author 2014.

Cite

CITATION STYLE

APA

Yuan, X., Li, Y., Liu, S., Xia, F., Li, X., & Qi, B. (2014). Accumulation of eicosapolyenoic acids enhances sensitivity to abscisic acid and mitigates the effects of drought in transgenic arabidopsis thaliana. Journal of Experimental Botany, 65(6), 1637–1649. https://doi.org/10.1093/jxb/eru031

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free