Controllable electrochemical synthesis of reduced graphene oxide thin-film constructed as efficient photoanode in dye-sensitized solar cells

19Citations
Citations of this article
60Readers
Mendeley users who have this article in their library.

Abstract

A controllable electrochemical synthesis to convert reduced graphene oxide (rGO) from graphite flakes was introduced and investigated in detail. Electrochemical reduction was used to prepare rGO because of its cost effectiveness, environmental friendliness, and ability to produce rGO thin films in industrial scale. This study aimed to determine the optimum applied potential for the electrochemical reduction. An applied voltage of 15 V successfully formed a uniformly coated rGO thin film, which significantly promoted effective electron transfer within dye-sensitized solar cells (DSSCs). Thus, DSSC performance improved. However, rGO thin films formed in voltages below or exceeding 15 V resulted in poor DSSC performance. This behavior was due to poor electron transfer within the rGO thin films caused by poor uniformity. These results revealed that DSSC constructed using 15 V rGO thin film exhibited high efficiency (η = 1.5211%) attributed to its higher surface uniformity than other samples. The addition of natural lemon juice (pH ~ 2.3) to the electrolyte accelerated the deposition and strengthened the adhesion of rGO thin film onto fluorine-doped tin oxide (FTO) glasses.

Cite

CITATION STYLE

APA

Chong, S. W., Lai, C. W., & Abd Hamid, S. B. (2016). Controllable electrochemical synthesis of reduced graphene oxide thin-film constructed as efficient photoanode in dye-sensitized solar cells. Materials, 9(2). https://doi.org/10.3390/ma9020069

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free