GTn repeat polymorphism in heme oxygenase-1 (HO-1) correlates with clinical outcome after myeloablative or nonmyeloablative allogeneic hematopoietic cell transplantation

5Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

Allogeneic hematopoietic cell transplantation (HCT) is a treatment for various hematologic diseases where efficacy of treatment is in part based on the graft versus tumour (GVT) activity of cells in the transplant. The cytoprotective enzyme heme oxygenase-1 (HO-1) is a ratelimiting enzyme in heme degradation and it has been shown to exert anti-inflammatory functions. In humans a (GT)n repeat polymorphism regulates the expression of HO-1. We conducted fragment length analyses of the (GT)n repeat in the promotor region of the gene for HO-1 in DNA from donors and recipients receiving allogeneic myeloablative- (MA) (n = 110) or nonmyeloablative- (NMA-) (n = 250) HCT. Subsequently, we compared the length of the (GT)n repeat with clinical outcome after HCT. We demonstrated that transplants from a HO- 1high donor after MA-conditioning (n = 13) is associated with higher relapse incidence at 3 years (p = 0.01, n = 110). In the NMA-conditioning setting transplantation of HO-1low donor cells into HO-1low recipients correlated significantly with decreased relapse related mortality (RRM) and longer progression free survival (PFS) (p = 0.03 and p = 0.008, respectively). Overall, our findings suggest that HO-1 may play a role for the induction of GVT effect after allogeneic HCT.

Cite

CITATION STYLE

APA

Køllgaard, T., Kornblit, B., Petersen, J., Klausen, T. W., Mortensen, B. K., Brñndstrup, P., … Straten, P. (2016). GTn repeat polymorphism in heme oxygenase-1 (HO-1) correlates with clinical outcome after myeloablative or nonmyeloablative allogeneic hematopoietic cell transplantation. PLoS ONE, 11(12). https://doi.org/10.1371/journal.pone.0168210

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free