Classification of phishing email using random forest machine learning technique

148Citations
Citations of this article
290Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Phishing is one of the major challenges faced by the world of e-commerce today. Thanks to phishing attacks, billions of dollars have been lost by many companies and individuals. In 2012, an online report put the loss due to phishing attack at about $1.5 billion. This global impact of phishing attacks will continue to be on the increase and thus requires more efficient phishing detection techniques to curb the menace. This paper investigates and reports the use of random forest machine learning algorithm in classification of phishing attacks, with the major objective of developing an improved phishing email classifier with better prediction accuracy and fewer numbers of features. From a dataset consisting of 2000 phishing and ham emails, a set of prominent phishing email features (identified from the literature) were extracted and used by the machine learning algorithm with a resulting classification accuracy of 99.7% and low false negative (FN) and false positive (FP) rates. © 2014 Andronicus A. Akinyelu and Aderemi O. Adewumi.

Cite

CITATION STYLE

APA

Akinyelu, A. A., & Adewumi, A. O. (2014). Classification of phishing email using random forest machine learning technique. Journal of Applied Mathematics, 2014. https://doi.org/10.1155/2014/425731

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free