Building upon the advancements in the recent years, a new paradigm in technology has emerged in Internet of Things (IoT). IoT has allowed for communication with the surrounding environment through a multitude of sensors and actuators, yet operating on limited energy. Several researchers have presented IoT architectures for respective applications, often challenged by requiring major updates for adoption to a different application. Further, this comes with several uncertainties such as type of computational device required at the edge, mode of wireless connectivity required, methods to obtain power efficiency, and not ensuring rapid deployment. This paper starts with providing a horizontal overview of each layer in IoT architecture and options for different applications. Then it presents a broad application-driven modular architecture, which can be easily customized for rapid deployment. This paper presents the diverse hardware used in several IoT layers such as sensors, embedded processors, wireless transceivers, internet gateway, and application management cloud server. Later, this paper presents implementation results for diverse applications including healthcare, structural health monitoring, agriculture, and indoor tour guide systems. It is hoped that this research will assist the potential user to easily choose IoT hardware and software as it pertains to their respective needs.
CITATION STYLE
Yelamarthi, K., Aman, M. S., & Abdelgawad, A. (2017). An application-driven modular IoT architecture. Wireless Communications and Mobile Computing, 2017. https://doi.org/10.1155/2017/1350929
Mendeley helps you to discover research relevant for your work.