During endoplasmic reticulum-associated degradation, the multifunctional AAA ATPase p97 is part of a protein degradation complex. p97 associates via its N-terminal domain with various cofactors to recruit ubiquitinated substrates. It also interacts with alternative substrate-processing cofactors, such as Ufd2, Ufd3, and peptide:N-glycanase (PNGase) in higher eukaryotes. These cofactors determine different fates of the substrates and they all bind outside of the N-terminal domain of p97. Here, we describe a cofactor-binding motif of p97 contained within the last 10 amino acid residues of the C terminus, which is both necessary and sufficient to mediate interactions of p97 with PNGase and Ufd3. The crystal structure of the N-terminal domain of PNGase in complex with this motif provides detailed insight into the interaction between p97 and its substrate-processing cofactors. Phosphorylation of p97's highly conserved penultimate tyrosine residue, which is the main phosphorylation site during T cell receptor stimulation, completely blocks binding of either PNGase or Ufd3 to p97. This observation suggests that phosphorylation of this residue modulates endoplasmic reticulum-associated protein degradation activity by discharging substrate-processing cofactors. © 2007 by The National Academy of Sciences of the USA.
CITATION STYLE
Zhao, G., Zhou, X., Wang, L., Li, G., Schindelin, H., & Lennarz, W. J. (2007). Studies on peptide:N-glycanase-p97 interaction suggest that p97 phosphorylation modulates endoplasmic reticulum-associated degradation. Proceedings of the National Academy of Sciences of the United States of America, 104(21), 8785–8790. https://doi.org/10.1073/pnas.0702966104
Mendeley helps you to discover research relevant for your work.