Adaptively and spatially estimating the hemodynamic response functions in fMRI

7Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In an event-related functional MRI data analysis, an accurate and robust extraction of the hemodynamic response function (HRF) and its associated statistics (e.g., magnitude, width, and time to peak) is critical to infer quantitative information about the relative timing of the neuronal events in different brain regions. The aim of this paper is to develop a multiscale adaptive smoothing model (MASM) to accurately estimate HRFs pertaining to each stimulus sequence across all voxels. MASM explicitly accounts for both spatial and temporal smoothness information, while incorporating such information to adaptively estimate HRFs in the frequency domain. One simulation study and a real data set are used to demonstrate the methodology and examine its finite sample performance in HRF estimation, which confirms that MASM significantly outperforms the existing methods including the smooth finite impulse response model, the inverse logit model and the canonical HRF. © 2011 Springer-Verlag.

Cite

CITATION STYLE

APA

Wang, J., Zhu, H., Fan, J., Giovanello, K., & Lin, W. (2011). Adaptively and spatially estimating the hemodynamic response functions in fMRI. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 6892 LNCS, pp. 269–276). https://doi.org/10.1007/978-3-642-23629-7_33

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free