Magnetoelectric phase transition driven by interfacial-engineered Dzyaloshinskii-Moriya interaction

25Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Strongly correlated oxides with a broken symmetry could exhibit various phase transitions, such as superconductivity, magnetism and ferroelectricity. Construction of superlattices using these materials is effective to design crystal symmetries at atomic scale for emergent orderings and phases. Here, antiferromagnetic Ruddlesden-Popper Sr2IrO4 and perovskite paraelectric (ferroelectric) SrTiO3 (BaTiO3) are selected to epitaxially fabricate superlattices for symmetry engineering. An emergent magnetoelectric phase transition is achieved in Sr2IrO4/SrTiO3 superlattices with artificially designed ferroelectricity, where an observable interfacial Dzyaloshinskii-Moriya interaction driven by non-equivalent interface is considered as the microscopic origin. By further increasing the polarization namely interfacial Dzyaloshinskii-Moriya interaction via replacing SrTiO3 with BaTiO3, the transition temperature can be enhanced from 46 K to 203 K, accompanying a pronounced magnetoelectric coefficient of ~495 mV/cm·Oe. This interfacial engineering of Dzyaloshinskii-Moriya interaction provides a strategy to design quantum phases and orderings in correlated electron systems.

Cite

CITATION STYLE

APA

Liu, X., Song, W., Wu, M., Yang, Y., Yang, Y., Lu, P., … Zhang, J. (2021). Magnetoelectric phase transition driven by interfacial-engineered Dzyaloshinskii-Moriya interaction. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-25759-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free