Background: This study aimed at investigating the oxidative stress ameliorating effect, lipids profile restoration, and the anti-inflammatory effect of Samsum Ant Venom (SAV) in induced endotoxemic male rats, injected with bacterial lipopolysaccharides (LPS). Results: Results revealed that LPS significantly increased the oxidative stress indications in LPS-injected rats. A significant increase of both malondialdehyde (MDA), and advanced oxidative protein products (AOPP), as well as a significant suppression of glutathione were all detected. Treatment with 100 μg/kg dose of SAV significantly restored the oxidative stress normal indications and increased the total glutathione levels. Treatment of the LPS-rats with 100 μg/kg dose of SAV showed a clear anti-inflammatory function; as the histological architecture of the hepatic tissue was partially recovered, along with a valuable decrease in the leukocytes infiltrated the hepatic tissues. Treatment of some rat groups with 600 μg/kg dose of SAV after LPS injection induced a severe endotoxemia that resulted in very high mortality rates. SAV versus the effects of LPS on AKT1, Fas, TNF-? and IFN-? mRNA expression. SAV was found to significantly lower Fas gene expression comparing to the LPS group and restore the level of IFN-? mRNA expression to that of the control group. Conclusion: In conclusion, SAV, at the dose of 100 μg/kg body weight, maintained and restored the oxidative stability, the anti-inflammatory, and the hypolipidemic bioactivity in rats after induced disruption of these parameters by LPS injection. This improvement by SAV was mediated by upregulation of AKT1. © 2012 Bi et al; licensee BioMed Central Ltd.
CITATION STYLE
Ebaid, H., Al-Khalifa, M., Isa, A. M., & Gadoa, S. (2012). Bioactivity of Samsum ant (Pachycondyla sennaarensis) venom against lipopolysaccharides through antioxidant and upregulation of Akt1 signaling in rats. Lipids in Health and Disease, 11. https://doi.org/10.1186/1476-511X-11-93
Mendeley helps you to discover research relevant for your work.