The human Na+-taurocholate cotransporting polypeptide (Ntcp) is located exclusively on the basolateral membrane of hepatocyte, but the mechanisms underlying its membrane sorting domain have not been fully elucidated. In the present study, a green fluorescent protein-fused human NTCP (NTCP-GFP) was constructed using the polymerase chain reaction and was stably transfected into Madin-Darby canine kidney (MDCK) and Caco-2 cells. Taurocholate uptake studies and confocal microscopy demonstrated that the polarity of basolateral surface expression of NTCP-GFP was maintained in MDCK cells but was lost in Caco-2 cells. Nocodazole (33 μM), an agent that causes microtubular depolymerization, partially disrupted the basolateral localization of NTCP-GFP by increasing apical surface expression to 33.5% compared with untreated cells (P < 0.05). Brefeldin A (BFA; 1-2 μM) disrupted the polarized basolateral localization of NTCP, but monensin (1.4 μM) had no affect on NTCP-GFP localization. In addition, low-temperature shift (20°C) did not affect the polarized basolateral surface sorting of NTCP-GFP and repolarization of this protein after BFA interruption. In summary, these data suggest that the polarized basolateral localization of human NTCP is cell specific and is mediated by a novel sorting pathway that is BFA sensitive and monensin and low-temperature shift insensitive. The process may also involve microtubule motors.
CITATION STYLE
Sun, A. Q., Swaby, I., Xu, S., & Suchy, F. J. (2001). Cell-specific basolateral membrane sorting of the human liver Na+-dependent bile acid cotransporter. American Journal of Physiology - Gastrointestinal and Liver Physiology, 280(6 43-6). https://doi.org/10.1152/ajpgi.2001.280.6.g1305
Mendeley helps you to discover research relevant for your work.