OpenNIR: A complete neural ad-hoc ranking pipeline

29Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.
Get full text

Abstract

With the growing popularity of neural approaches for ad-hoc ranking, there is a need for tools that can effectively reproduce prior results and ease continued research by supporting current state-of-the-art approaches. Although several excellent neural ranking tools exist, none offer an easy end-to-end ad-hoc neural raking pipeline. A complete pipeline is particularly important for ad-hoc ranking because there are numerous parameter settings that have a considerable effect on the ultimate performance yet often are under-reported in current work (e.g., initial ranking settings, re-ranking threshold, training sampling strategy, etc.). In this work, I present a complete ad-hoc neural ranking pipeline which addresses these shortcomings: OpenNIR. The pipeline is easy to use (a single command will download required data, train, and evaluate a model), yet highly configurable, allowing for continued work in areas that are understudied. Aside from the core pipeline, the software also includes several bells and whistles that make use of components of the pipeline, such as performance benchmarking and tuning of unsupervised ranker parameters for fair comparisons against traditional baselines. The pipeline and these capabilities are demonstrated. The code is available, and contributions are welcome.

Cite

CITATION STYLE

APA

MacAvaney, S. (2020). OpenNIR: A complete neural ad-hoc ranking pipeline. In WSDM 2020 - Proceedings of the 13th International Conference on Web Search and Data Mining (pp. 845–848). Association for Computing Machinery, Inc. https://doi.org/10.1145/3336191.3371864

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free