Band-edge emission enhancement in sputtered ZnO thin films with ultraviolet surface lattice resonances

4Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Metallic nanostructures acting as optical nanoantennas can significantly enhance the photoluminescence (PL) of nearby emitters. Albeit luminescence enhancement factors of several orders of magnitude have been reported for quantum dots or molecules, in the case of bulk emitters, the magnitude of the plasmonic enhancement is strongly hindered by the weak spatial overlap between the active medium and the electromagnetic modes of the nanoantenna. Here, we propose a solid-state ultraviolet emitter based on a thin film of zinc oxide (ZnO) coupled with an array of aluminum (Al) nanoparticles. The Al nanorod array is designed to sustain surface lattice resonances (SLRs) in the near ultraviolet, which are hybrid modes exhibiting a Fano-like lineshape with narrowed linewidth relatively to the non-hybridized plasmonic modes. By changing both the period of the array and the dimensions of the nanorods, the generated SLR is tuned either to the near band-edge (NBE) emission of ZnO or to the excitation wavelength. We experimentally demonstrate that NBE emission can be increased up to a factor of 3 compared to bare ZnO. The underlying PL enhancement mechanisms are experimentally investigated and compared with numerical simulations. We also demonstrate that SLRs are more efficient for the ZnO luminescence enhancement compared to localized surface plasmon resonances.

Cite

CITATION STYLE

APA

Simon, T., Kostcheev, S., Rumyantseva, A., Béal, J., Gérard, D., & Martin, J. (2021). Band-edge emission enhancement in sputtered ZnO thin films with ultraviolet surface lattice resonances. Journal of Applied Physics, 130(22). https://doi.org/10.1063/5.0073588

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free