A novel wire mesh consisting of very fine wires and pores is numerically investigated for the purpose of noise reduction. To develop a numerical model for this wire mesh, a set of experimental flow-field data has been deployed for the model validation. The experimental data were measured with only 22% of the wind-tunnel cross section covered by the wire mesh, taking into account the vortex shedding from both sides of the wire-mesh fairing. It is found that existing wire-mesh models using a damping-type source term proportional to the square of flow velocity do not perform well in modeling this novel wire mesh. To tackle this issue, an improvement is proposed by additionally introducing a linear term to account for the permeability of the wire mesh, based on another set of experiments with the wind-tunnel cross section fully covered by the wire mesh. The proposed model is then validated against the experimental data, demonstrating its capability in modeling the wire mesh. Subsequently, the model is applied to a tandem cylinder configuration. Results show that a wide but short-span wire mesh significantly reduces the dominant tone of tandem cylinders, noise at higher frequencies, as well as the overall sound pressure levels.
CITATION STYLE
Li, S., Davidson, L., & Peng, S. H. (2023). Numerical modeling of a wire mesh for aerodynamic noise reduction. Physics of Fluids, 35(1). https://doi.org/10.1063/5.0129284
Mendeley helps you to discover research relevant for your work.