We here illustrate how a well-founded study of the brain may originate in assuming analogies with phase-transition phenomena. Analyzing to what extent a weak signal endures in noisy environments, we identify the underlying mechanisms, and it results a description of how the excitability associated to (non-equilibrium) phase changes and criticality optimizes the processing of the signal. Our setting is a network of integrate-and-fire nodes in which connections are heterogeneous with rapid time-varying intensities mimicking fatigue and potentiation. Emergence then becomes quite robust against wiring topology modification - in fact, we considered from a fully connected network to the Homo sapiens connectome - showing the essential role of synaptic flickering on computations. We also suggest how to experimentally disclose significant changes during actual brain operation.
CITATION STYLE
Torres, J. J., & Marro, J. (2015). Brain Performance versus Phase Transitions. Scientific Reports, 5. https://doi.org/10.1038/srep12216
Mendeley helps you to discover research relevant for your work.