Effect of the Composition of Hybrid Sands on the Change in Thermal Expansion

5Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

In the foundry industry, silica sands are the most commonly used type of sands for the production of sand foundry moulds using various types of binders. Their greatest disadvantage is their significant volume changes at elevated temperatures, which are associated with the formation of many foundry defects from stress, such as veining, and thus have a direct influence on the final quality of the casting. In the case of non-silica sands and synthetic sands, the volume stability is more pronounced, but this is accompanied by a higher purchase price. Therefore, a combination of silica sand and synthetic sand CERABEADS is considered in order to influence and reduce the thermal expansion. The hybrid mixtures of sands, and their most suitable ratios, were evaluated in detail using sieve analysis, log W and cumulative curve of granularity. It was found that the addition of 50% CERABEADS achieves a 32.2% reduction in dilatation but may increase the risk of higher stresses. The measurements showed a significant effect of the granulometric composition of the sand on the resulting thermal expansion, where the choice of grain size and sorting can achieve a significant reduction in dilatation with a small addition of CERABEADS.

Cite

CITATION STYLE

APA

Radkovský, F., Gawronová, M., Merta, V., Lichý, P., Kroupová, I., Nguyenová, I., … Kocich, R. (2022). Effect of the Composition of Hybrid Sands on the Change in Thermal Expansion. Materials, 15(17). https://doi.org/10.3390/ma15176180

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free