Colloquium: Quantum anomalous Hall effect

91Citations
Citations of this article
139Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The quantum Hall (QH) effect, quantized Hall resistance combined with zero longitudinal resistance, is the characteristic experimental fingerprint of Chern insulators - topologically nontrivial states of two-dimensional matter with broken time-reversal symmetry. In Chern insulators, nontrivial bulk band topology is expressed by chiral states that carry current along sample edges without dissipation. The quantum anomalous Hall (QAH) effect refers to QH effects that occur in the absence of external magnetic fields due to spontaneously broken time-reversal symmetry. The QAH effect has now been realized in four different classes of two-dimensional materials: (i) thin films of magnetically (Cr- and/or V-) doped topological insulators in the (Bi,Sb)2Te3 family, (ii) thin films of the intrinsic magnetic topological insulator MnBi2Te4, (iii) moiré materials formed from graphene, and (iv) moiré materials formed from transition-metal dichalcogenides. In this Colloquium, the physical mechanisms responsible for each class of QAH insulator are reviewed, with both differences and commonalities highlighted, and potential applications of the QAH effect are commented upon.

Cite

CITATION STYLE

APA

Chang, C. Z., Liu, C. X., & Macdonald, A. H. (2023). Colloquium: Quantum anomalous Hall effect. Reviews of Modern Physics, 95(1). https://doi.org/10.1103/RevModPhys.95.011002

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free