Visualization of high-dimensional data by pairwise fusion matrices using t-SNE

27Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

Abstract

We applied t-distributed stochastic neighbor embedding (t-SNE) to visualize Urdu handwritten numerals (or digits). The data set used consists of 28 × 28 images of handwritten Urdu numerals. The data set was created by inviting authors from different categories of native Urdu speakers. One of the challenging and critical issues for the correct visualization of Urdu numerals is shape similarity between some of the digits. This issue was resolved using t-SNE, by exploiting local and global structures of the large data set at different scales. The global structure consists of geometrical features and local structure is the pixel-based information for each class of Urdu digits. We introduce a novel approach that allows the fusion of these two independent spaces using Euclidean pairwise distances in a highly organized and principled way. The fusion matrix embedded with t-SNE helps to locate each data point in a two (or three-) dimensional map in a very different way. Furthermore, our proposed approach focuses on preserving the local structure of the high-dimensional data while mapping to a low-dimensional plane. The visualizations produced by t-SNE outperformed other classical techniques like principal component analysis (PCA) and auto-encoders (AE) on our handwritten Urdu numeral dataset.

Cite

CITATION STYLE

APA

Husnain, M., Missen, M. M. S., Mumtaz, S., Luqman, M. M., Coustaty, M., & Ogier, J. M. (2019). Visualization of high-dimensional data by pairwise fusion matrices using t-SNE. Symmetry, 11(1). https://doi.org/10.3390/sym11010107

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free