Computational analyses of tail fin configurations for a sounding rocket

3Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Missiles and sounding rockets usually deviate from the trajectory due to unstable roll. Fins with cant angles are generally used to provide a rolling moment in sounding rockets and missiles to minimize the instability. Inducing a rolling moment also leads to an increase in the rocket motor’s power consumption due to the rise in drag, so inducing an optimal rolling moment with a minimal increase in drag is a crucial design criterion. It is crucial to maintain the similarity parameters while testing a scaled-down model in a wind tunnel. Therefore, computational fluid dynamics (CFD) is more efficient than extensive wind tunnel tests. In this paper, three-dimensional, incompressible simulations were performed on different models of sounding rockets using commercial CFD package fluent. The simulations were performed with the help of k- ϵ standard turbulence model. The results obtained were tabulated and graphically represented, and the trends of aerodynamic coefficients like Cd and Cm were analyzed. The purpose of this study is to analyze the dependency of aerodynamic coefficients on different fin configurations with emphasis on the cant angle. This study will be helpful to researchers designing a sounding rocket and help in maximizing apogee. The experimental and computational results show a favourable comparison. The results will show a particular configuration of fin having greater Cm/ Cd which yields in a greater rolling moment and least amount of drag.

Cite

CITATION STYLE

APA

Sankalp, S. S., Sharma, V., Singh, A., Salian, A. S., & Srinivas, G. (2022). Computational analyses of tail fin configurations for a sounding rocket. Aerospace Systems, 5(2), 233–246. https://doi.org/10.1007/s42401-021-00116-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free