Skip to main content

Live Tracking of Inter-organ Communication by Endogenous Exosomes In Vivo

80Citations
Citations of this article
236Readers
Mendeley users who have this article in their library.

This artice is free to access.

Abstract

Extracellular vesicles (EVs) are released by most cell types but providing evidence for their physiological relevance remains challenging due to a lack of appropriate model organisms. Here, we developed an in vivo model to study EV function by expressing CD63-pHluorin in zebrafish embryos. A combination of imaging methods and proteomic analysis allowed us to study biogenesis, composition, transfer, uptake, and fate of individual endogenous EVs. We identified a subpopulation of EVs with exosome features, released in a syntenin-dependent manner from the yolk syncytial layer into the blood circulation. These exosomes are captured, endocytosed, and degraded by patrolling macrophages and endothelial cells in the caudal vein plexus (CVP) in a scavenger receptor- and dynamin-dependent manner. Interference with exosome biogenesis affected CVP growth, suggesting a role in trophic support. Altogether, our work represents a system for studying endogenous EV function in vivo with high spatiotemporal accuracy, demonstrating functional inter-organ communication by exosomes. Verweij et al. develop an in vivo model using zebrafish embryos to live-track the production, journey, and fate of individual exosomes. Using a combination of imaging methods and proteomic analysis, they investigate the composition of endogenous exosomes and the molecular mechanisms controlling their biogenesis, fates, and functions in receiving cells.

Cite

CITATION STYLE

APA

Verweij, F. J., Revenu, C., Arras, G., Dingli, F., Loew, D., Pegtel, D. M., … van Niel, G. (2019). Live Tracking of Inter-organ Communication by Endogenous Exosomes In Vivo. Developmental Cell, 48(4), 573-589.e4. https://doi.org/10.1016/j.devcel.2019.01.004

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free