The laser-aided direct metal deposition technique was used to form Co-285 superalloy (A) and Co-285 + 30 wt pct WC (B) wear-resistant coatings on 1018 mild steel. Microstructure, element distribution, phases, microhardness distribution, and wear properties of the two coatings were investigated using scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX) spectrometry, scanning transmission electron microscopy (TEM), X-ray diffractometry (XRD), microhardness testing, and wear testing. Results indicate that both of the coatings had dense structures, as well as a metallurgical bonding with the substrate. In addition, coating B had microcracks and randomly distributed undissolved WC particles in it. Coating A was composed of α-Co dendrites, Co3W precipitates, and eutectics, while coating B was composed of undissolved WC, Co-rich dendrites, eutectics, and the W-rich third phases with various shapes. Crack behavior in coating B was also discussed. The average microhardness of the matrix in coating B was 751 HV0.5, which was almost 1.8 times that of coating A (420 HV0.5). Wear results indicate that the wear resistance of coating B was improved by 6.8 times compared with that of coating A. The improvement in wear resistance is believed to be partially due to the undissolved WC and the formation of large numbers of carbides in the matrix working as wear-resistant phases and partially due to the good bonding between the hard phases and the tough matrix. © 2010 The Minerals, Metals & Materials Society and ASM International.
CITATION STYLE
Sun, G. F., Liu, C. S., Song, L. J., & Mazumder, J. (2010). Microstructure and wear behavior of laser-aided direct metal deposited Co-285 and Co-285 + WC coatings. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 41(6), 1592–1603. https://doi.org/10.1007/s11661-010-0189-3
Mendeley helps you to discover research relevant for your work.