Coupling an electroactive pseudomonas Putida KT2440 with bioelectrochemical rhamnolipid production

18Citations
Citations of this article
37Readers
Mendeley users who have this article in their library.

Abstract

Sufficient supply of oxygen is a major bottleneck in industrial biotechnological synthesis. One example is the heterologous production of rhamnolipids using Pseudomonas putida KT2440. Typically, the synthesis is accompanied by strong foam formation in the reactor vessel hampering the process. It is caused by the extensive bubbling needed to sustain the high respirative oxygen demand in the presence of the produced surfactants. One way to reduce the oxygen requirement is to enable the cells to use the anode of a bioelectrochemical system (BES) as an alternative sink for their metabolically derived electrons. We here used a P. putida KT2440 strain that interacts with the anode using mediated extracellular electron transfer via intrinsically produced phenazines, to perform heterologous rhamnolipid production under oxygen limitation. The strain P. putida RL-PCA successfully produced 30.4 ± 4.7 mg/L mono-rhamnolipids together with 11.2 ± 0.8 mg/L of phenazine-1-carboxylic acid (PCA) in 500-mL benchtop BES reactors and 30.5 ± 0.5 mg/L rhamnolipids accompanied by 25.7 ± 8.0 mg/L PCA in electrode containing standard 1-L bioreactors. Hence, this study marks a first proof of concept to produce glycolipid surfactants in oxygen-limited BES with an industrially relevant strain.

Cite

CITATION STYLE

APA

Askitosari, T. D., Berger, C., Tiso, T., Harnisch, F., Blank, L. M., & Rosenbaum, M. A. (2020). Coupling an electroactive pseudomonas Putida KT2440 with bioelectrochemical rhamnolipid production. Microorganisms, 8(12), 1–15. https://doi.org/10.3390/microorganisms8121959

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free