Bioactive molecules from sea hares.

45Citations
Citations of this article
38Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Sea hares, belonging to the order Opisthobranchia, subclass Gastropoda, are mollusks that have attracted many researchers who are interested in the chemical defense mechanisms of these soft and "shell-less" snails. Numbers of small molecules of dietary origin have been isolated from sea hares and some have ecologically relevant activities, such as fish deterrent activity or toxicity. Recently, however, greater attention has been paid to biomedically interesting sea hare isolates such as dolastatins, a series of antitumor peptide/macrolides isolated from Dolabella auricularia. Another series of bioactive peptide/macrolides, as represented by aplyronines, have been isolated from sea hares in Japanese waters. Although earlier studies indicated the potent antitumor activity of aplyronines, their clinical development has never been conducted because of the minute amount of compound available from the natural source. Recent synthetic studies, however, have made it possible to prepare these compounds and analogs for a structure-activity relationship study, and started to uncover their unique action mechanism towards their putative targets, microfilaments. Here, recent findings of small antitumor molecules isolated from Japanese sea hares are reviewed. Sea hares are also known to produce cytotoxic and antimicrobial proteins. In contrast to the small molecules of dietary origin, proteins are the genetic products of sea hares and they are likely to have some primary physiological functions in addition to ecological roles in the sea hare. Based on the biochemical properties and phylogenetic analysis of these proteins, we propose that they belong to one family of molecule, the "Aplysianin A family," although their molecular weights are apparently divided into two groups. Interestingly, the active principles in Aplysia species and Dolabella auricularia were shown to be L-amino acid oxidase (LAAO), a flavin enzyme that oxidizes an alpha-amino group of the substrate with molecular oxygen and liberates hydrogen peroxide, with a sequence similar to other known LAAOs, including snake venom. Possible antibacterial activity and cytotoxic activity mechanisms of these proteins are also discussed.

Cite

CITATION STYLE

APA

Kamiya, H., Sakai, R., & Jimbo, M. (2006). Bioactive molecules from sea hares. Progress in Molecular and Subcellular Biology. https://doi.org/10.1007/978-3-540-30880-5_10

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free