Indoleamine 2,3-dioxygenase (IDO) is a tryptophan-catabolizing enzyme that, expressed by different cell types, has regulatory effects on T cells resulting from tryptophan depletion in specific local tissue microenvironments. Different mechanisms, however, might contribute to IDO-dependent immune regulation. We show here that tryptophan metabolites in the kynurenine pathway, such as 3-hydroxyanthranilic and quinolinic acids, will induce the selective apoptosis in vitro of murine thymocytes and of Th1 but not Th2 cells. T cell apoptosis was observed at relatively low concentrations of kynurenines, did not require Fas/Fas ligand interactions, and was associated with the activation of caspase-8 and the release of cytochrome c from mitochondria. When administered in vivo, the two kynurenines caused depletion of specific thymocyte subsets in a fashion qualitatively similar to dexamethasone. These data suggest that the selective deletion of T lymphocytes may be a major mechanism whereby tryptophan metabolism affects immunity under physiopathologic conditions.
CITATION STYLE
Fallarino, F., Grohmann, U., Vacca, C., Bianchi, R., Orabona, C., Spreca, A., … Puccetti, P. (2002). T cell apoptosis by tryptophan catabolism. Cell Death and Differentiation, 9(10), 1069–1077. https://doi.org/10.1038/sj.cdd.4401073
Mendeley helps you to discover research relevant for your work.