Finding consistent disease subnetworks across microarray datasets

24Citations
Citations of this article
39Readers
Mendeley users who have this article in their library.

Abstract

Background: While contemporary methods of microarray analysis are excellent tools for studying individual microarray datasets, they have a tendency to produce different results from different datasets of the same disease. We aim to solve this reproducibility problem by introducing a technique (SNet). SNet provides both quantitative and descriptive analysis of microarray datasets by identifying specific connected portions of pathways that are significant. We term such portions within pathways as " subnetworks" .Results: We tested SNet on independent datasets of several diseases, including childhood ALL, DMD and lung cancer. For each of these diseases, we obtained two independent microarray datasets produced by distinct labs on distinct platforms. In each case, our technique consistently produced almost the same list of significant nontrivial subnetworks from two independent sets of microarray data. The gene-level agreement of these significant subnetworks was between 51.18% to 93.01%. In contrast, when the same pairs of microarray datasets were analysed using GSEA, t-test and SAM, this percentage fell between 2.38% to 28.90% for GSEA, 49.60% tp 73.01% for t-test, and 49.96% to 81.25% for SAM. Furthermore, the genes selected using these existing methods did not form subnetworks of substantial size. Thus it is more probable that the subnetworks selected by our technique can provide the researcher with more descriptive information on the portions of the pathway actually affected by the disease.Conclusions: These results clearly demonstrate that our technique generates significant subnetworks and genes that are more consistent and reproducible across datasets compared to the other popular methods available (GSEA, t-test and SAM). The large size of subnetworks which we generate indicates that they are generally more biologically significant (less likely to be spurious). In addition, we have chosen two sample subnetworks and validated them with references from biological literature. This shows that our algorithm is capable of generating descriptive biologically conclusions. © 2011 Soh et al; licensee BioMed Central Ltd.

References Powered by Scopus

Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles

35967Citations
N/AReaders
Get full text

Significance analysis of microarrays applied to the ionizing radiation response

10035Citations
N/AReaders
Get full text

Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring

9608Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Stability of feature selection algorithm: A review

370Citations
N/AReaders
Get full text

How advancement in biological network analysis methods empowers proteomics

53Citations
N/AReaders
Get full text

Finding consistent disease subnetworks using PFSNet

37Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Soh, D., Dong, D., Guo, Y., & Wong, L. (2011). Finding consistent disease subnetworks across microarray datasets. BMC Bioinformatics, 12(SUPPL. 13). https://doi.org/10.1186/1471-2105-12-S13-S15

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 17

57%

Researcher 9

30%

Professor / Associate Prof. 4

13%

Readers' Discipline

Tooltip

Agricultural and Biological Sciences 18

60%

Computer Science 8

27%

Medicine and Dentistry 3

10%

Chemistry 1

3%

Save time finding and organizing research with Mendeley

Sign up for free