Earth system models are intended to make long-term projections, but they can be evaluated at interannual and seasonal time scales. Although the Community Earth System Model (CESM2) showed improvements in a number of terrestrial carbon cycle benchmarks, relative to its predecessor, our analysis suggests that the interannual variability (IAV) in net terrestrial carbon fluxes did not show similar improvements. The model simulated low IAV of net ecosystem production (NEP), resulting in a weaker than observed sensitivity of the carbon cycle to climate variability. Low IAV in net fluxes likely resulted from low variability in gross primary productivity (GPP)—especially in the tropics—and a high covariation between GPP and ecosystem respiration. Although lower than observed, the IAV of NEP had significant climate sensitivities, with positive NEP anomalies associated with warmer and drier conditions in high latitudes, and with wetter and cooler conditions in mid and low latitudes. We identified two dominant modes of seasonal variability in carbon cycle flux anomalies in our fully coupled CESM2 simulations that are characterized by seasonal amplification and redistribution of ecosystem fluxes. Seasonal amplification of net and gross carbon fluxes showed climate sensitivities mirroring those of annual fluxes. Seasonal redistribution of carbon fluxes is initiated by springtime temperature anomalies, but subsequently negative feedbacks in soil moisture during the summer and fall result in net annual carbon losses from land. These modes of variability are also seen in satellite proxies of GPP, suggesting that CESM2 appropriately represents regional sensitivities of photosynthesis to climate variability on seasonal time scales.
CITATION STYLE
Wieder, W. R., Butterfield, Z., Lindsay, K., Lombardozzi, D. L., & Keppel-Aleks, G. (2021). Interannual and Seasonal Drivers of Carbon Cycle Variability Represented by the Community Earth System Model (CESM2). Global Biogeochemical Cycles, 35(9). https://doi.org/10.1029/2021GB007034
Mendeley helps you to discover research relevant for your work.