Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis

856Citations
Citations of this article
511Readers
Mendeley users who have this article in their library.

Abstract

In the early stages of nonalcoholic fatty liver disease (NAFLD), triglycerides accumulate in hepatocytes. Diacylglycerol acyltransferase 2 (DGAT2) catalyzes the final step in hepatocyte triglyceride biosynthesis. DGAT2 antisense oligonucleotide (ASO) treatment improved hepatic steatosis dramatically in a previous study of obese mice. According to the 2-hit hypothesis for progression of NAFLD, hepatic steatosis is a risk factor for nonalcoholic steatohepatitis (NASH) and fibrosis. To evaluate this hypothesis, we inhibited DGAT2 in a mouse model of NASH induced by a diet deficient in methionine and choline (MCD). Six-week-old genetically obese and diabetic male db/db mice were fed either the control or the MCD diet for 4 or 8 weeks. The MCD diet group was treated with either 25 mg/kg DGAT2 ASO or saline intraperitoneally twice weekly. Hepatic steatosis, injury, fibrosis, markers of lipid peroxidation/oxidant stress, and systemic insulin sensitivity were evaluated. Hepatic steatosis, necroinflammation, and fibrosis were increased in saline-treated MCD diet-fed mice compared to controls. Treating MCD diet-fed mice with DGAT2 ASO for 4 and 8 weeks decreased hepatic steatosis, but increased hepatic free fatty acids, cytochrome P4502E1, markers of lipid peroxidation/oxidant stress, lobular necroinflammation, and fibrosis. Progression of liver damage occurred despite reduced hepatic expression of tumor necrosis factor alpha, increased serum adiponectin, and striking improvement in systemic insulin sensitivity. Conclusion: Results from this mouse model would suggest accumulation of triglycerides may be a protective mechanism to prevent progressive liver damage in NAFLD. Copyright © 2007 by the American Association for the Study of Liver Diseases.

Cite

CITATION STYLE

APA

Yamaguchi, K., Yang, L., McCall, S., Huang, J., Xing, X. Y., Pandey, S. K., … Diehl, A. M. (2007). Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology, 45(6), 1366–1374. https://doi.org/10.1002/hep.21655

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free