Interferon (IFN)-β is a popular therapy for multiple sclerosis (MS). However, 25–40% of patients are nonresponsive to this therapy, and it worsens neuromyelitis optica (NMO), another neuroinflammatory disease. We previously identified, in both NMO patients and in mice, that IFN-β treatment had inflammatory effects in T Helper (TH) 17-induced disease through the production of the inflammatory cytokine IL-6. However, other studies have shown that IFN-β inhibits the differentiation and function of TH17 cells. In this manuscript, we identified that IFN-β had differential effects on discrete stages of TH17 development. During early TH17 development, IFN-β inhibits IL-17 production. Conversely, during late TH17 differentiation, IFN-β synergizes with IL-23 to promote a pathogenic T cell that has both TH1 and TH17 characteristics and expresses elevated levels of the potent inflammatory cytokines IL-6 and GM-CSF and the transcription factor BLIMP. Together, these findings help resolve a paradox surrounding IFN-β and TH17-induced disease and illuminate the pathways responsible for the pathophysiology of NMO and MS patients who are IFN-β nonresponders.
CITATION STYLE
Agasing, A., Quinn, J. L., Kumar, G., & Axtell, R. C. (2021). Interferon-β intensifies interleukin-23-driven pathogenicity of T helper cells in neuroinflammatory disease. Cells, 10(8). https://doi.org/10.3390/cells10082139
Mendeley helps you to discover research relevant for your work.