Oxide Derived Copper for Electrochemical Reduction of CO2 to C2+ Products

25Citations
Citations of this article
38Readers
Mendeley users who have this article in their library.

Abstract

The electrochemical reduction of carbon dioxide (CO2) on copper electrode derived from cupric oxide (CuO), named oxide derived copper (ODCu), was studied thoroughly in the potential range of -1.0 V to -1.5 V versus RHE. The CuO nanoparticles were prepared by the hydrothermal method. The ODCu electrode was used for carbon dioxide reduction and the results revealed that this electrode is highly selective for C2+ products with enhanced current density at significantly less overpotential. This catalyst shifts the selectivity towards C2+ products with the highest Faradaic efficiency up to 58% at -0.95 V. In addition, C2 product formation at the lowest onset potential of -0.1 V is achieved with the proposed catalyst. X-ray diffraction and scanning electron microscopy revealed the reduction of CuO to Cu (111) nanoparticles during the CO2 RR· The intrinsic property of the synthesized catalyst and its surface reduction are suggested to induce sites or edges for facilitating the dimerization and coupling of intermediates to ethanol and ethylene.

Cite

CITATION STYLE

APA

Zahid, A., Shah, A., & Shah, I. (2022). Oxide Derived Copper for Electrochemical Reduction of CO2 to C2+ Products. Nanomaterials, 12(8). https://doi.org/10.3390/nano12081380

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free